Γράφτηκε από τον/την Λάμπρος Κατηγορία: Ανανεώσιμες πηγές Ενέργειας
Δημοσιεύτηκε στις 22 Νοεμβρίου 2010 Εμφανίσεις: 2824
Εκτύπωση

Αρχές λειτουργίας φωτοβολταϊκών συστημάτων

Φωτοβολταικό φαινόμενο

Το φωτοβολταϊκό φαινόμενο και η λειτουργία του φωτοβολταϊκού συστήματος στηρίζεται στις βασικές ιδιότητες των ημιαγωγών υλικών σε ατομικό επίπεδο. Ας πάρουμε όμως τα πράγματα από την αρχή.

Όταν το φως προσπίπτει σε μια επιφάνεια είτε ανακλάται, είτε την διαπερνά (διαπερατότητα) είτε απορροφάται από το υλικό της επιφάνειας. Η απορρόφηση του φωτός ουσιαστικά σημαίνει την μετατροπή του σε μια άλλη μορφή ενέργειας (σύμφωνα με την αρχή διατήρησης της ενέργειας) η οποία συνήθως είναι η θερμότητα.

Παρόλα αυτά όμως υπάρχουν κάποια υλικά τα οποία έχουν την ιδιότητα να μετατρέπουν την ενέργεια των προσπιπτοντων φωτονίων (πακέτα ενέργειας) σε ηλεκτρική ενέργεια. Αυτά τα υλικά είναι οι ημιαγωγοί και σε αυτά οφείλεται επίσης η τεράστια τεχνολογική πρόοδος που έχει συντελευτεί στον τομέα της ηλεκτρονικής και συνεπακόλουθα στον ευρύτερο χώρο της πληροφορικής και των τηλεπικοινωνιών.

Γενικότερα τα υλικά στην φύση σε σχέση με τα ηλεκτρικά χαρακτηριστικά τους εμπίπτουν σε τρεις κατηγορίες, τους αγωγούς του ηλεκτρισμού, τους μονωτές και τους ημιαγωγούς. Ένας ημιαγωγός έχει την ιδιότητα να μπορεί να ελεγχθεί η ηλεκτρική του αγωγιμότητα είτε μόνιμα είτε δυναμικά.

Χαρακτηριστικά Ημιαγωγών

silicon_atomic_structurearsenic_structureboron-structure

Το χαρακτηριστικό στοιχείο ενός ημιαγωγού που το διαφοροποιεί από τα υπόλοιπα υλικά είναι ο αριθμός των ηλεκτρονίων ενός ατόμου που βρίσκεται στην εξωτερική του στοιβάδα (σθένους). Ο περισσότερο γνωστός ημιαγωγός είναι το πυρίτιο (Si) για αυτό και θα επικεντρωθούμε σε αυτό.

Το πυρίτιο έχει ατομικό αριθμό 14 και έχει στην εξωτερική του στοιβάδα 4 ηλεκτρόνια. Όλα τα άτομα που έχουν λιγότερα η περισσότερα ηλεκτρόνια στην εξωτερική στοιβάδα (είναι "γενικά" συμπληρωμένη με 8 e) ψάχνουν άλλα άτομα με τα οποία μπορούν να ανταλλάξουν ηλεκτρόνια ή να μοιρασθούν κάποια με σκοπό τελικά να αποκτήσουν συμπληρωμένη εξωτερική στοιβάδα σθένους.

Σε αυτήν την τάση οφείλεται και η κρυσταλλική δομή του πυριτίου αφού όταν συνυπάρχουν πολλά άτομα μαζί διατάσσονται με τέτοιο τρόπο ώστε να συνεισφέρουν ηλεκτρόνια με όλα τα γειτονικά τους άτομα και τελικά με αυτόν τον τρόπο να αποκτούν μια συμπληρωμένη εξωτερική στοιβάδα και κρυσταλλική δομή. Αυτή είναι και η καθοριστική ιδιότητα που έχουν τα κρυσταλλικά υλικά.

Στην κρυσταλλική του μορφή όμως το πυρίτιο είναι σταθερό. Δεν έχει ανάγκη ούτε να προσθέσει ούτε να διώξει ηλεκτρόνια κάτι που ουσιαστικά του δίνει ηλεκτρικά χαρακτηριστικά πολύ κοντά σε αυτά ενός μονωτή αφού δεν υπάρχουν ελεύθερα ηλεκτρόνια για την δημιουργία ηλεκτρικού ρεύματος στο εσωτερικό του.

Τις ημιαγωγές ιδιότητες του το πυρίτιο τις αποκτά με τεχνικό τρόπο. Αυτό πρακτικά γίνεται με την πρόσμειξη με άλλα στοιχεία τα οποία είτε έχουν ένα ηλεκτρόνιο περισσότερο είτε ένα λιγότερο στην στοιβάδα σθένους των. Αυτή η πρόσμειξη τελικά κάνει τον κρύσταλλο δεκτικό είτε σε θετικά φορτία (υλικό τύπου p) είτε σε αρνητικά φορτία (υλικό τύπου n)

Για να φτιαχτεί λοιπόν ένας ημιαγωγός τύπου n ή αλλιώς ένας αρνητικά φορτισμένος κρύσταλλος πυριτίου θα πρέπει να γίνει πρόσμειξη ενός υλικού με 5e στην εξωτερική του στοιβάδα όπως για παράδειγμα το Αρσένιο (As).

Αντίστοιχα για να δημιουργήσουμε έναν ημιαγωγό τύπου p η αλλιώς θετικά φορτισμένος κρύσταλλος πυριτίου χρειάζεται να γίνει πρόσμειξη στον κρύσταλλο κάποιου υλικού όπως το βόριο (Β) που έχει 3e στην εξωτερική του στοιβάδα.

Επαφή Ηλεκτρικού πεδίου

constrains

Εάν φέρουμε σε επαφή δύο κομμάτια πυριτίου τύπου n και τύπου p το ένα απέναντι από το άλλο δημιουργείται μια δίοδος η αλλιώς ένα ηλεκτρικό πεδίο στην επαφή των δύο υλικών το οποίο επιτρέπει την κίνηση ηλεκτρονίων προς μια κατεύθυνση μόνο.

Τα επιπλέον ηλεκτρόνια της επαφής n έλκονται από τις «οπές» τις επαφής p. Αυτό το ζευγάρι των δύο υλικών είναι το δομικό στοιχείο του φωτοβολταϊκού κελιού και η βάση της φωτοβολταϊκής τεχνολογίας.

Επίδραση ακτινοβολίας

Η ηλιακή ακτινοβολία έρχεται με την μορφή πακέτων ενέργειας ή φωτονίων. Τα φωτόνια όταν προσπίπτουν σε μια διάταξη φβ κελιού περνούν αδιατάραχτα την επαφή τύπου n και χτυπούν τα άτομα της περιοχής τύπου p. Τα ηλεκτρόνια της περιοχής τύπου p αρχίζουν και κινούνται μεταξύ των οπών ώσπου τελικά φτάνουν στην περιοχή της διόδου όπου και έλκονται πλέον από το θετικό πεδίο της εκεί περιοχής.

Αφού ξεπεράσουν το ενεργειακό χάσμα αυτής της περιοχής μετά είναι αδύνατον να επιστρέψουν. Στο κομμάτι της επαφής n πλέον έχουμε μια περίσσεια ηλεκτρονίων που μπορούμε να εκμεταλλευτούμε. Αυτή η περίσσεια των ηλεκτρονίων μπορεί να παράγει ηλεκτρικό ρεύμα εάν τοποθετήσουμε μια διάταξη όπως ένας μεταλλικός αγωγός στο πάνω μέρος της επαφής n και στο κάτω της επαφής p και ένα φορτίο ενδιάμεσα με τέτοιο τρόπο ώστε να κλείσει ένας αγώγιμος δρόμος για το ηλεκτρικό ρεύμα που παράγεται. Αυτή είναι απλοποιημένα η γενική αρχή λειτουργίας του φωτοβολταϊκού φαινόμενου.

Φωτοβολταϊκά πάνελ

Τα ηλιακά φωτοβολταϊκά πάνελ είναι το κύριο μέρος ένος φωτοβολταϊκού συστήματος και έχουν την δυνατότητα να παράγουν απ' ευθείας ηλεκτρικό ρεύμα κάτω από την επίδραση της ηλιακής ακτινοβολίας με την χρήση του φωτοβολταϊκού φαινομένου. Οι βασικές κατηγορίες φωτοβολταϊκών πλαισίων, solar panels (πάνελ) που υπάρχουν στην αγορά είναι:

Κατηγορίες Ηλιακών Solar Panel:

  • Φωτοβολταϊκά Πάνελ σε διασυνδεδεμένα συστήματα

  • Φωτοβολταϊκά Πάνελ σε αυτόνομα συστήματα

  • Φωτοβολταϊκά Πάνελ σε συστήματα ενσωματωμένα στην δομή κτιρίων

Τα κύρια χαρακτηριστικά που διαφοροποιούν τα πάνελ και θα πρέπει να προσεχτούν κατά την προμήθεια φωτοβολταϊκού εξοπλισμού, είναι:

  1. Pm = Η ονομαστική (μέγιστη) ισχύς (σε Watt)
  2. Vpm = Η τάση που αντιστοιχεί στην ονομαστική ισχύ (σε Volt)
  3. Ipm = Η ένταση ρεύματος που αντιστοιχεί στην ονομαστική ισχύ (σε Ampere)
  4. Voc = Τάση ανοιχτού κυκλώματος (σε Volt)
  5. Ιsc = Ένταση ρεύματος βραχυκυκλώματος (σε Ampere)
  6. Vmax= Μέγιστη Τάση συστήματος (σε Volt)
  7. Tcoe= Συντελεστές επίδρασης θερμοκρασίας αPm (%/C), αIsc (%/C), αVoc (mV/C)
  8. Εγγύηση απόδοσης solar panel
  9. Εγγύηση προϊόντος

Τα βασικά μέρη ενός "standard" φωτοβολταϊκού πλαισίου είναι:

  • Τα φωτοβολταϊκά στοιχεία
  • Υλικό EVA για την ενθυλάκωση των στοιχείων
  • Το ειδικό γυαλί στο εμπρόσθιο μέρος
  • Το ειδικό φύλλο προστασίας στo πίσω μέρος (συνήθως TPT Tedlar)
  • Το πλαίσιο αλουμινίου
  • Το κουτί σύνδεσης
panelpanel panelcell
 

Τύποι φωτοβολταϊκών πάνελ

Τo υλικό που χρησιμοποιείται περισσότερο για να κατασκευαστούν φωτοβολταικα στοιχεία στην βιομηχανία είναι το πυρίτιο. Είναι ίσως και το μοναδικό υλικό που παράγεται με τόσο μαζικό τρόπο. Το πυρίτιο σήμερα αποτελεί την πρώτη ύλη για το 90% της αγοράς των φωτοβολταϊκών.

Τα σημαντικότερα πλεονεκτήματα του πυριτίου είναι:

- Μπορεί να βρεθεί πάρα πολύ εύκολα στην φύση. Είναι το δεύτερο σε αφθονία υλικό που υπάρχει στον πλανήτη μετά το οξυγόνο. Το διοξείδιο του πυριτίου (SiO2) (ή κοινώς η άμμος) και ο χαλαζίτης αποτελούν το 28% του φλοιού της γης. Είναι ιδιαίτερα φιλικό προς το περιβάλλον.
- Μπορεί εύκολα να λιώσει και να μορφοποιηθεί. Επίσης είναι σχετικά εύκολο να μετατραπεί στην μονοκρυσταλλική του μορφή.
- Οι ηλεκτρικές του ιδιότητες μπορούν να διατηρηθούν μέχρι και στους 125oC κάτι που επιτρέπει την χρήση του πυριτίου σε ιδιαίτερα δύσκολες περιβαλλοντικές συνθήκες. Αυτός είναι και ο λόγος που τα φωτοβολταϊκά στοιχεία πυριτίου ανταπεξέρχονται σε ένα ιδιαίτερα ευρύ φάσμα θερμοκρασιών.
- Πολύ σημαντικό στοιχείο, που συνέβαλε στην γρήγορη ανάπτυξη τα φωτοβολταικα στοιχεία τα τελευταία χρόνια, ήταν η ήδη αναπτυγμένη τεχνολογία, στην βιομηχανία της επεξεργασίας του πυριτίου, στον τομέα της ηλεκτρονικής (υπολογιστές, τηλεοράσεις κλπ). Το 2007 μάλιστα ήταν η πρώτη χρονιά που υπήρχε μεγαλύτερη ζήτηση (σε τόνους κρυσταλλικού πυριτίου) στην αγορά των φωτοβολταϊκών στοιχειών σε σχέση με αυτήν των ημιαγωγών της ηλεκτρονικής.

- Μια κατηγοριοποίηση για τα φωτοβολταϊκά στοιχεία θα μπορούσε να γίνει με βάση το πάχος του υλικού που χρησιμοποιείται.

 

Τύποι φωτοβολταϊκών συστημάτων πυριτίου «μεγάλου πάχους»

  1. Φωτοβολταικά στοιχεία μονοκρυσταλλικού πυριτίου (Single Crystalline siicon, sc-Si)
    Το πάχος τους είναι γύρω στα 0,3 χιλιοστά. Η απόδοση τους στην βιομηχανία κυμαίνεται από 15 - 18% για το πλαίσιο. Στο εργαστήριο έχουν επιτευχθεί ακόμα μεγαλύτερες αποδόσεις έως και 24,7%. Το μονοκρυσταλλικά φωτοβολταικα στοιχεια χαρακτηρίζονται από το πλεονέκτημα της καλύτερης σχέση απόδοσης/επιφάνειας ή "ενεργειακής πυκνότητας". Ένα άλλο χαρακτηριστικό είναι το υψηλό κόστος κατασκευής σε σχέση με τα πολυκρυσταλλικά. Βασικές τεχνολογίες παραγωγής μονοκρυσταλλικών φωτοβολταϊκών είναι η μέθοδος CZ (Czochralski) και η μέθοδος FZ (float zone). Αμφότερες βασίζονται στην ανάπτυξη ράβδου πυριτίου.
  2. Φωτοβολταικά κελιά πολυκρυσταλλικού πυριτίου (Multi Crystalline siicon, mc-Si)
    Το πάχος τους είναι επίσης περίπου 0,3 χιλιοστά. Η μέθοδος παραγωγής τους είναι φθηνότερη από αυτήν των μονοκρυσταλλικών γι' αυτό και η τιμή τους είναι συνήθως λίγο χαμηλότερη. Οπτικά μπορεί κανείς να παρατηρήσει τις επιμέρους μονοκρυσταλλικές περιοχές. Όσο μεγαλύτερες είναι σε έκταση οι μονοκρυσταλλικές περιοχές τόσο μεγαλύτερη είναι και η απόδοση για τα πολυκρυσταλλικά φωτοβολταικά κελιά.
    Σε εργαστηριακές εφαρμογές έχουν επιτευχθεί αποδόσεις έως και 20% ενώ στο εμπόριο τα πολυκρυσταλλικά στοιχεία διατίθενται με αποδόσεις από 13 έως και 15% για τα φωτοβολταϊκά πλαίσια (πάνελ). Βασικότερες τεχνολογίες παραγωγής είναι: η μέθοδος απ' ευθείας στερεοποίησης DS (directional solidification). , η ανάπτυξη λιωμένου πυριτίου ("χύτευση"), και η ηλεκτρομαγνητική χύτευση EMC.
  3. Φωτοβολταικά στοιχεία ταινίας πυριτίου (Ribbon Silicon)
    Πρόκειται για μια σχετικά νέα τεχνολογία φωτοβολταϊκών στοιχειων. Αναπτύσεται από την Evergreen Solar. Προσφέρει έως και 50% μείωση στην χρήση του πυριτίου σε σχέση με τις "παραδοσιακές τεχνικές" κατασκευής μονοκρυσταλλικών και πολυκρυσταλλικών φωτοβολταϊκών κυψελών πυριτίου.
    Η απόδοση για τα φωτοβολταϊκά στοιχεία του έχει φτάσει πλέον γύρω στο 12-13% ενώ το πάχος του είναι περίπου 0,3 χιλιοστά. Στο εργαστήριο έχουν επιτευχθεί αποδόσεις της τάξης του 18%.

Τύποι φωτοβολταϊκών συστημάτων λεπτής στρώσης (thin film)

  1. Δισεληνοινδιούχος Χαλκός (CuInSe2 ή CIS με προσθήκη γαλλίου CIGS)
    Ο Δισεληνοϊνδιούχος Χαλκός έχει εξαιρετική απορροφητικότητα στο προσπίπτων φως αλλά παρόλα αυτά η απόδοση του με τις σύγχρονες τεχνικές κυμαίνεται στο 11% (πλαίσιο).
    Εργαστηριακά έγινε εφικτή απόδοση στο επίπεδο του 18,8% η οποία είναι και η μεγαλύτερη που έχει επιτευχθεί μεταξύ των φωτοβολταϊκών τεχνολογιών λεπτής επιστρώσεως. Με την πρόσμιξη γάλλιου η απόδοση του μπορεί να αυξηθεί ακόμα περισσότερο CIGS. Το πρόβλημα που υπάρχει είναι ότι το ίνδιο υπάρχει σε περιορισμένες ποσότητες στην φύση. Στα επόμενα χρόνια πάντως αναμένεται το κόστος του να είναι αρκετά χαμηλότερο.
  2. Φωτοβολταικά στοιχεία άμορφου πυριτίου (Thin film silicon - a-Si)
    Τα φωτοβολταϊκά στοιχεία αυτά, έχουν αισθητά χαμηλότερες αποδόσεις σε σχέση με τις δύο προηγούμενες κατηγορίες. Πρόκειται για ταινίες λεπτών επιστρώσεων οι οποίες παράγονται με την εναπόθεση ημιαγωγού υλικού (πυρίτιο στην περίπτωση μας) πάνω σε υπόστρωμα υποστήριξης, χαμηλού κόστους όπως γυαλί ή αλουμίνιο. Έτσι και λόγω της μικρότερης ποσότητας πυριτίου που χρησιμοποιείται η τιμή τους είναι γενικότερα αρκετά χαμηλότερη.
    Ο χαρακτηρισμός άμορφο φωτοβολταϊκό προέρχεται από τον τυχαίο τρόπο με τον οποίο είναι διατεταγμένα τα άτομα του πυριτίου. Οι επιδόσεις που επιτυγχάνονται με χρησιμοποιώντας φωτοβολταικα thin films πυριτίου κυμαίνονται για το πλαίσιο από 6 έως 8% ενώ στο εργαστήριο έχουν επιτευχθεί αποδόσεις ακόμα και 14%.
    Το σημαντικότερο πλεονέκτημα για το φωτοβολταϊκό στοιχείο a-Si είναι το γεγονός ότι δεν επηρεάζεται πολύ από τις υψηλές θερμοκρασίες. Επίσης, πλεονεκτεί στην αξιοποίηση της απόδοσης του σε σχέση με τα κρυσταλλικά ΦΒ, όταν υπάρχει διάχυτη ακτινοβολία (συννεφιά).
    Το μειονέκτημα των άμορφων πλαισίων είναι η χαμηλή τους ενεργειακή πυκνότητα κάτι που σημαίνει ότι για να παράγουμε την ίδια ενέργεια χρειαζόμαστε σχεδόν διπλάσια επιφάνεια σε σχέση με τα κρυσταλλικά φωτοβολταικα στοιχεία. Επίσης υπάρχουν αμφιβολίες όσων αφορά την διάρκεια ζωής των άμορφων πλαισίων μιας και δεν υπάρχουν στοιχεία από παλιές εγκαταστάσεις αφού η τεχνολογία είναι σχετικά καινούρια. Παρόλα αυτά οι κατασκευαστές πλέον δίνουν εγγύησεις απόδοσης 20 ετών. Το πάχος του πυριτίου είναι περίπου 0,0001 χιλιοστά ενώ το υπόστρωμα μπορεί να είναι από 1 έως 3 χιλιοστά.
  3. Τελουριούχο Κάδμιο (CdTe)
    Το Τελουριούχο Κάδμιο έχει ενεργειακό διάκενο γύρω στο 1eV το οποίο είναι πολύ κοντά στο ηλιακό φάσμα κάτι που του δίνει σοβαρά πλεονεκτήματα όπως την δυνατότητα να απορροφά το 99% της προσπίπτουσας ακτινοβολίας. Οι σύγχρονες τεχνικές όμως μας προσφέρουν αποδόσεις πλαισίου γύρω στο 6-8%. Στο εργαστήριο η απόδοση στα φωτοβολταικα στοιχεια έχει φθάσει το 16%.
  4. Αρσενικούχο Γάλλιο (GaAs)
    Το Γάλλιο είναι ένα παραπροϊόν της ρευστοποίησης άλλων μετάλλων όπως το αλουμίνιο και ο ψευδάργυρος. Είναι πιο σπάνιο ακόμα και από τον χρυσό. Το Αρσένιο δεν είναι σπάνιο άλλα έχει το μειονέκτημα ότι είναι δηλητηριώδες.
    Το αρσενικούχο γάλλιο έχει ενεργειακό διάκενο 1,43eV που είναι ιδανικό για την απορρόφηση της ηλιακής ακτινοβολίας.
    Η απόδοση του στην μορφή πολλαπλών συνενώσεων (multijunction) είναι η υψηλότερη που έχει επιτευχθεί και αγγίζει το 29%. Επίσης τα φωτοβολταικα στοιχεια GaAs είναι εξαιρετικά ανθεκτικά στις υψηλές θερμοκρασίες γεγονός που επιβάλλει σχεδόν την χρήση τους σε εφαρμογές ηλιακών συγκεντρωτικών συστημάτων (solar concentrators). Τα φωτοβολταικα στοιχεία GaAs έχουν το πλεονέκτημα ότι αντέχουν σε πολύ υψηλές ποσότητες ηλιακής ακτινοβολίας, για αυτό αλλά και λόγω της πολύ υψηλής απόδοσης του ενδείκνυται για διαστημικές εφαρμογές. Το μεγαλύτερο μειονέκτημα αυτής της τεχνολογίας είναι το υπερβολικό κόστος του μονοκρυσταλλικού GaAs υποστρώματος.

Υβριδικά φωτοβολταικά στοιχεία

Ένα υβριδικό φωτοβολταϊκό στοιχείο αποτελείται από στρώσεις υλικών διαφόρων τεχνολογιών. - HIT (Heterojunction with Intrinsic Thin-layer). Τα ποιο γνωστά εμπορικά υβριδικά φωτοβολταϊκά στοιχεία αποτελούνται από δύο στρώσεις άμορφου πυριτίου (πάνω και κάτω) ενώ ενδιάμεσα υπάρχει μια στρώση μονοκρυσταλλικού πυριτίου.

Το μεγάλο πλεονέκτημα αυτής της τεχνολογίας είναι ο υψηλός βαθμός απόδοσης του πλαισίου που φτάνει σε εμπορικές εφαρμογές στο 17,2% και το οποίο σημαίνει ότι χρειαζόμαστε μικρότερη επιφάνεια για να έχουμε την ίδια εγκατεστημένη ισχύ. Τα αντίστοιχα φωτοβολταϊκά στοιχεία έχουν απόδοση 19,7%. Αλλα πλεονεκτήματα για τα υβριδικά φωτοβολταικα στοιχεία είναι η υψηλή τους απόδοση σε υψηλές θερμοκρασίες αλλά και η μεγάλη τους απόδοση στην διαχεόμενη ακτινοβολία. Φυσικά, αφού προσφέρει τόσα πολλά, το υβριδικο φωτοβολταικο είναι και κάπως ακριβότερο σε σχέση με τα συμβατικά φωτοβολταικά πλαίσια.

Άλλοι τύποι φωτοβολταικών στοιχείων

  1. Νανοκρυσταλλικά φωτοβολταϊκά στοιχεία πυριτίου (nc-Si)
  2. Οργανικά/Πολυμερή στοιχεία

Περιορισμοί

solar-cell-efficiency

Το κάθε ημιαγωγό υλικό αντιδρά σε διαφορετικά μήκη κύματος της ακτινοβολίας. Κάποια υλικά αντιδρούν σε ευρύτερα φάσματα ακτινοβολίας από κάποια άλλα.

Έτσι ανάλογα με το υλικό που χρησιμοποιούμε μπορούμε να εκμεταλλευτούμε μόνο εκείνο το φάσμα της ακτινοβολίας που αντιδρά με το συγκεκριμένο υλικό. Το ποσοστό της ηλεκτρικής ενέργειας που παράγεται σε σχέση με την προσπίπτουσα ηλιακή ενέργεια συμβολίζει τον συντελεστή απόδοσης του υλικού. Οι δύο βασικοί παράγοντες για την απόδοση ενός φωτοβολταϊκού υλικού είναι το ενεργειακό χάσμα του υλικού και ο συντελεστής μετατροπής.

You are here:   HomeΑ.Π.Ε.Τεχνολογια Φ/Β
| + - | RTL - LTR

I Support the Bring Them Back Campaign

Joomla! is Free Software released under the GNU/GPL License.